11.11.2015 Взять и поделить или деление по модулю

Материал из SRNS
Перейти к: навигация, поиск
Строка 93: Строка 93:
 
возвращает ''остаток от деления'' в виде числа с плавающей точкой  (numer - tquot * denom), где tquot - результат округления в сторону нуля дроби numer/denom. Иначе говоря, функция использует truncated division или функцию fix().
 
возвращает ''остаток от деления'' в виде числа с плавающей точкой  (numer - tquot * denom), где tquot - результат округления в сторону нуля дроби numer/denom. Иначе говоря, функция использует truncated division или функцию fix().
  
{{Hider|title = fmod() (доступны fig)
+
{{Hider|title = fmod() /доступны fig/
 
  |content =  
 
  |content =  
 
<center>[[file:20151112_fmod.png]]</center>
 
<center>[[file:20151112_fmod.png]]</center>
Строка 108: Строка 108:
 
</source>
 
</source>
 
аналогична fmod(), но использует округление к ближайшему целому, то есть функцию '''round''' вместо fix.
 
аналогична fmod(), но использует округление к ближайшему целому, то есть функцию '''round''' вместо fix.
 +
 +
{{Hider|title = remainder()  /доступны fig/
 +
|content =
 +
<center>[[20151112_remainder.png]]</center>
 +
|hidden = 1
 +
}}
 +
 
== Ссылки ==
 
== Ссылки ==
 
<references/>
 
<references/>

Версия 15:04, 12 ноября 2015

Содержание

Есть некоторая неуверенность в результатах работы функций взятия модуля, для борьбы с которой составлена эта памятка.

Лично я привык к работе функции mod(a, b) в MATLAB, которая приводит a к диапазону [0 b] или [b 0] (в зависимости от знака b) путем прибавления/вычитания целого числа b к/из a. Что выражается в формуле:

mod(a, b) = a - floor(a ./ b)*b,

где функция floor - округление в сторону минус бесконечности.

Операция взятия остатка по модулю замечательна своими свойствами:

(a+b)mod n = [a(mod n) + b(mod n)]mod n
(a-b)mod n = [a(mod n) - b(mod n)]mod n
(a*b)mod n = [a(mod n) * b(mod n)]mod n
[c*(a+b)]mod n = [c*a(mod n) + c*b(mod n)]mod n

Как оказалось, делить можно по-разному, в зависимости от функции, которую мы используем для округления[1]. Для себя я теперь разделяю понятия остатка от деления (remainder after devision) и приведения числа по модулю (modulus after devision). Первое - результат школьного деления столбиком, где остатку приписывается знак согласно принятому соглашению. В этом случае для округления используется fix() - truncated division. Второе - приведение числа к диапазону, использует floor() - floored division. Результаты будут отличаться тогда, когда аргументы имеют разный знак.

Так какие функции и операторы реализуют остаток от деления, какие взятие по модулю, и как они зависят от типов аргументов? Ниже представлены результаты, полученные на Oryx 161, компилятор из Xilinx SDK 2014.4 ( gcc version 4.8.3 20140320 (prerelease) (Sourcery CodeBench Lite 2014.05-23)).

Оператор %


Следует обратить внимание:

  • int a % uint b = mod(*(uint*(&a)), b) - результаты для -13%(int 7) и -13%(uint 7) различаются; если брать int % uint, то int интерпретируется как uint, например, -1 превращается в 2^32-1.
  • uint a % int b = b<0 ? a : mod(a, b) - взятие uint % отрицательного числа - холостая операция, результат - исходный uint
  • int a % int b = sign(a) * mod(|a|, |b|) - как подсказывает стандарт, до C (ISO 1999) и C++ (ISO 2011) знак зависел от реализации, теперь же применяется знак делимого
  • int a % int b = (MATLAB)rem(a, b) - ведет себя как функция rem() в MATLAB: rem(a, b) = a - fix(a/b)*b, где fix() - функция округления в сторону нуля
  • int a % int b ведет себя как функция mod() в MATLAB только при совпадении знаков аргументов, иначе есть смещение на b (за исключением точек, в которых результат ноль)

Выводы:

  • Оператор % дает в нашей системе остаток от деления (truncated division)

Для наглядности построены графики (доступен fig):


Функция fmod

Функция[2]:

double fmod (double numer, double denom)

возвращает остаток от деления в виде числа с плавающей точкой (numer - tquot * denom), где tquot - результат округления в сторону нуля дроби numer/denom. Иначе говоря, функция использует truncated division или функцию fix().


Функция remainder

Функция[3]:

     double remainder  (double numer     , double denom);
      float remainderf (float numer      , float denom);
long double remainderl (long double numer, long double denom);

аналогична fmod(), но использует округление к ближайшему целому, то есть функцию round вместо fix.


Ссылки

  1. Wiki: Modulo operation
  2. http://www.cplusplus.com/reference/cmath/fmod/
  3. remainder

[ Хронологический вид ]Комментарии

(нет элементов)

Войдите, чтобы комментировать.

Персональные инструменты
Пространства имён

Варианты
Действия
SRNS Wiki
Рабочие журналы
Приватный файлсервер
QNAP Сервер
Инструменты