Дискриминатор задержки NELP — различия между версиями

Материал из SRNS
Перейти к: навигация, поиск
 
Строка 47: Строка 47:
 
Флуктуационная характеристика описывается выражением<br />
 
Флуктуационная характеристика описывается выражением<br />
  
<math>D_{u\tau }^{{}}=\left( 1-\rho^{{}}\left( 2\Delta \tau  \right) \right)16q_{c/n0}^{{}}T\sigma _{IQ}^{4}\left( \rho ^{2}\left( \Delta \tau \right)+\frac{1+\rho ^{{}}\left( 2\Delta \tau  \right)}{2q_{c/n0}^{{}}T} \right)</math>.
+
<math>D_{u\tau }^{{}}=\left( 1-\rho ^{{}}\left( \Delta \tau  \right) \right)16q_{c/n0}^{{}}T\sigma _{IQ}^{4}\left( \rho ^{2}\left( \frac{\Delta \tau }{2} \right)+\frac{1+\rho \left( \Delta \tau  \right)}{2q_{c/n0}^{{}}T} \right)</math>.
  
 
Дисперсия шума эквивалентного наблюдения, т.е. шума с выхода дискриминатора, пересчитанного к его входу при нулевой расстройке <br />
 
Дисперсия шума эквивалентного наблюдения, т.е. шума с выхода дискриминатора, пересчитанного к его входу при нулевой расстройке <br />
  
<math>D_{\tilde{u}\tau }^{{}}=\frac{D_{u\tau }^{{}}}{S{{_{d }^{{}}}^{2}}}=\frac{4\left( 1-\rho ^{{}}\left( 2\Delta \tau  \right) \right)\left( \rho ^{2}\left( \Delta \tau \right)+\frac{1+\rho ^{{}}\left( 2\Delta \tau  \right)}{2q_{c/n0}^{{}}T} \right)}{2q_{c/n0}^{{}}{{T}^{{}}}{{\left( \frac{2}{\tau _{chip}^{{}}}-\frac{\Delta \tau }{\tau _{chip}^{2}} \right)}^{2}}}</math>
+
<math>D_{\tilde{u}\tau }^{{}}=\frac{D_{u\tau }^{{}}}{S{{_{d}^{{}}}^{2}}}=\frac{4\left( 1-\rho \left( \Delta \tau  \right) \right)\left( \rho ^{2}\left( \frac{\Delta \tau }{2} \right)+\frac{1+\rho \left( \Delta \tau  \right)}{2q_{c/n0}^{{}}T} \right)}{2q_{c/n0}^{{}}{{T}^{{}}}{{\left( \frac{2}{\tau _{chip}^{{}}}-\frac{{}^{\Delta \tau }/{}_{2}}{\tau _{chip}^{2}} \right)}^{2}}}</math>
  
  

Текущая версия на 18:15, 11 мая 2020

[править] Описание дискриминатора

Non-coherent Early minus Late Power (NELP) - некогерентный дискриминатор задержки, описываемый следующим соотношением:

u_{d\tau}=(I_{E,k}^2+Q_{E,k}^2) - (I_{L,k}^2+Q_{L,k}^2),

где
I_{E,k}(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) = \sum_{l=1}^{L}y(t_{k,l})h_{c}(t_{k,l}-\widetilde{\tau}_k+\frac{\Delta\tau}{2})\mbox{cos}(\omega_0t_{k,l}+\widetilde{\omega}_{d\,k}(l-1)T_d)),
I_{L,k}(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) = \sum_{l=1}^{L}y(t_{k,l})h_{c}(t_{k,l}-\widetilde{\tau}_k-\frac{\Delta\tau}{2})\mbox{cos}(\omega_0t_{k,l}+\widetilde{\omega}_{d\,k}(l-1)T_d)),

Q_{E,k}(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) = \sum_{l=1}^{L}y(t_{k,l})h_{c}(t_{k,l}-\widetilde{\tau}_k+\frac{\Delta\tau}{2})\mbox{sin}(\omega_0t_{k,l}+\widetilde{\omega}_{d\,k}(l-1)T_d)),
Q_{L,k}(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) = \sum_{l=1}^{L}y(t_{k,l})h_{c}(t_{k,l}-\widetilde{\tau}_k-\frac{\Delta\tau}{2})\mbox{sin}(\omega_0t_{k,l}+\widetilde{\omega}_{d\,k}(l-1)T_d)).

\Delta\tau - сдвиг дальномерного кода между запаздывающей и опережающей компонентами.

[править] Дискриминационная характеристика

Дискриминационная характеристика описывается выражением (для квадратур с единичной дисперсией)
U(\varepsilon_\tau) = 2q_{c/n0}T\mbox{sinc}^2(\varepsilon_{\omega,k}T/2)\left ( \rho\left (\varepsilon_\tau - \frac{\Delta\tau}{2}  \right )^2 - \rho\left (\varepsilon_\tau + \frac{\Delta\tau}{2}  \right )^2 \right ).

Ее крутизна S_d = 2q_{c/n0}T\mbox{sinc}^2(\varepsilon_{\omega,k}T/2)\left ( \frac{4}{\tau_{chip}} - \frac{2\Delta\tau}{\tau_{chip}^2} \right ) .


Для проверки формул составлена модель в Matlab. В модели принято:

  • длительность символа дальномерного кода {{\tau }_{chip}} = 2 мкс,
  • расстройка по частоте {{\varepsilon }_{\omega }}=10 Гц,
  • каждая точка моделируемой дискриминационной характеристики усреднялась 1000 раз,
  • корреляционная функция дальномерного кода соответствует сигналу с BPSK : \rho \left( {{\varepsilon }_{\tau }} \right)=1-\frac{\left| {{\varepsilon }_{\tau }} \right|}{{{\tau }_{chip}}};
  • коррелированность шумов квадратур E, P, L моделируется с помощью разложения Холецкого.


Результат моделирования для {q}_{c/n0}=45 дБГц, T=1 мс, \Delta \tau ={{\tau }_{chip}}:

20140327 DZO q45,T=1ms,delta=chip.png


Результаты моделирования для {q}_{c/n0}=45 дБГц, T=1 мс, \Delta \tau =\frac{\tau_{chip}}{10}:

20140327 DZO q45,T=1ms,delta=0.1chip.png


Результаты моделирования для {q}_{c/n0}=35 дБГц, T=20 мс, \Delta \tau =\frac{\tau_{chip}}{5}:

20140327 DZO q35,T=20ms,delta=chip5.png

[править] Флуктуационная характеристика

Флуктуационная характеристика описывается выражением

D_{u\tau }^{{}}=\left( 1-\rho ^{{}}\left( \Delta \tau  \right) \right)16q_{c/n0}^{{}}T\sigma _{IQ}^{4}\left( \rho ^{2}\left( \frac{\Delta \tau }{2} \right)+\frac{1+\rho \left( \Delta \tau  \right)}{2q_{c/n0}^{{}}T} \right).

Дисперсия шума эквивалентного наблюдения, т.е. шума с выхода дискриминатора, пересчитанного к его входу при нулевой расстройке

D_{\tilde{u}\tau }^{{}}=\frac{D_{u\tau }^{{}}}{S{{_{d}^{{}}}^{2}}}=\frac{4\left( 1-\rho \left( \Delta \tau  \right) \right)\left( \rho ^{2}\left( \frac{\Delta \tau }{2} \right)+\frac{1+\rho \left( \Delta \tau  \right)}{2q_{c/n0}^{{}}T} \right)}{2q_{c/n0}^{{}}{{T}^{{}}}{{\left( \frac{2}{\tau _{chip}^{{}}}-\frac{{}^{\Delta \tau }/{}_{2}}{\tau _{chip}^{2}} \right)}^{2}}}


Аналитические выражения проверены на модели.
В модели принято:

  • длительность символа дальномерного кода {{\tau }_{chip}}=\frac{1}{511} мс,
  • время накопления коррелятора {{T }_{c }}=3 мс,
  • усреднение проводилось по 5000 реализациям,
  • расстройка по частоте {{\varepsilon }_{\omega }}=10 Гц,
  • корреляционная функция дальномерного кода соответствует сигналу с BPSK : \rho \left( {{\varepsilon }_{\tau }} \right)=1-\frac{\left| {{\varepsilon }_{\tau }} \right|}{{{\tau }_{chip}}};
  • коррелированность шумов квадратур E, P, L моделируется с помощью разложения Холецкого.


Результаты моделирования:

Зависимость СКО шума на выходе дискриминатора от отношения сигнал/шум при \Delta \tau =\frac{\tau_{chip}}{10}:

20200511 dep Du qcn0 NELP.png

Зависимость СКО эквивалентных шумов от отношения сигнал/шум при \Delta \tau =\frac{\tau_{chip}}{10}:

20200511 dep Du Sd2 qcn0 NELP.png


Персональные инструменты
Пространства имён

Варианты
Действия
SRNS Wiki
Рабочие журналы
Приватный файлсервер
QNAP Сервер
Инструменты